RATIONAL TECHNOLOGICAL APPROACHES TO MANAGING TIMBER TREATMENT RESIDUES IN URBAN PARKS OF KHMELNYTSKYI
DOI:
https://doi.org/10.37406/2706-9052-2025-4.34Keywords:
mini-dump truck, Cedrus TR300G, logging residues, park plantings, forestry, load capacity, extension sides, transportation efficiency, environmental safetyAbstract
The article presents the results of research on the effectiveness of using the Cedrus TR300G mini-dump truck for the removal of logging residues in city and forest parks of Khmelnytskyi. It was found that the actual carrying capacity is only partially utilized due to the uneven shape and density of the material. When transporting freshly cut maple logs with an average length of 0.8–1.0 m and a diameter of 6–12 cm, the average cargo weight was 170–190 kg (55–60% of the rated capacity), and the volumetric filling of the body was 0.25–0.28 m³. Light residues – branches, brushwood, and small shrubs – utilized only 7–8% of the carrying capacity, significantly increasing the number of trips, fuel consumption, and time required. The use of quick-detachable extension sides, which increased the body height from 0.23 to 0.9 m, nearly quadrupled the cargo volume (up to 1.0 m³), increased the load capacity utilization factor to 75–80% for logs and to 40–45% for light residues, and reduced the number of trips by almost half, resulting in 30–35% fuel savings and lower labor costs. The total harvested wood volume was 4.9 dense m³, of which 3.4 dense m³ was firewood. The technological specific fuel consumption per 1 m³ of wood was 1.48 kg, and the specific labor costs were 5.33 man-hours. Assessment of off-road performance on areas with obstacles showed a decrease in speed to 1.0–1.4 km/h when carrying 200–250 kg, whereas on flat surfaces the speed reached 3.0–3.5 km/h. Overloading beyond 300 kg caused partial skidding; however, the caterpillar track ensured uniform soil pressure (0.22–0.24 MPa), minimizing damage to vegetation. The results confirm the feasibility of using small-scale mechanization in park management and the effectiveness of design improvements. The data can be used to optimize technologies for removing logging residues in city and forest parks, increasing environmental safety and economic efficiency in the maintenance of green spaces for recreational purposes.
References
Гелетуха Г.Г., Желєзна Т.А., Драгнєв С.В., Баштовий А.І. Аналіз можливостей заготівлі деревного палива в лісах України. Промислова теплотехніка. 2018. Т. 40. № 1. С. 61–67. URL: http://nbuv.gov.ua/UJRN/PTT_2018_40_1_11
Можливості заготівлі деревного палива в лісах України / Г.Г. Гелетуха та ін. Аналітична записка БАУ. 2018. № 19. URL: https://uabio.org/wp-content/uploads/2018/01/position-paper-uabio-19-ua.pdf
Правила рубок головного користування : Наказ Державного комітету лісового господарства України від 23.12.2009 № 364. URL: http://zakon3.rada.gov.ua/laws/show/z0085-10
Санітарні правила в лісах України : Постанова Кабінету Міністрів України від 27.07.1995 № 555 (зі змінами). Київ : КМУ, 1995. URL: https://faolex.fao.org/docs/pdf/ukr51854.pdf
Ackerman P., Conradie I. Performance of harvesting residue treatment methods in south african pine plantations. Forests. 2016. Vol. 7(6). P. 116. https://doi.org/10.3390/f7060116
Baker J.S., et al. Logging residue supply and costs for electricity generation: Potential variability and policy considerations. Energy Policy 2018. 116(5). P. 397–409. https://doi.org/10.1016/j.enpol.2017.11.026
Chen C.X., et al. Modeling the processing and transportation logistics of forest residues using life cycle assessment. Journal of Forestry. 2017. 115(2). https://doi.org/10.5849/jof.2016-027
Eriksson M., Lindroos O. Rubber-tracked forwarders – productivity and cost efficiency potentials. Forests. 2014. Vol. 5(7). P. 1544–1561. https://doi.org/10.3390/f5071544
Figueiredo da Silva J., et al. Analysis of the truck transportation of eucalyptus logging residues to Portuguese power plants. International Journal of Forest Engineering. 2019. 30(1). P. 1–10. https://doi.org/10.1080/14942119.2019.1565029
Han H., Chung W., Wells L., Anderson N. Optimizing biomass feedstock logistics for forest residue processing and transportation on a tree-shaped road network. Forests. 2018. 9(3). P. 121. URL: https://doi.org/10.3390/f9030121
Lopes D., Fernandes C., Reis A. Analysis of the truck transportation of eucalyptus logging residues to portuguese power plants. Biomass Conversion and Biorefinery. 2016. Vol. 6. P. 295–304. https://doi.org/10.1080/17597269.2016.1154822
Myalkovsky R., Plahtiy D., Bezvikonnyi P., Horodyska O., Nebaba K. Urban parks as an important component of environmental infrastructure: Biodiversity conservation and recreational opportunities Scientific Journal Ukrainian Journal of Forest & Wood Science. 2023. Vol. 14. Іss. 4. P. 57–72. https://doi.org/10.31548/forest/4.2023.57
Ranius T., et al. The effects of logging residue extraction for energy on biodiversity and ecosystem services. Journal of Environmental Management. 2018. Vol. 209(1). P. 409–425. https://doi.org/10.1016/j.jenvman.2017.12.048
Spinelli R., Magagnotti N., Nati C. Forest operations using a combi-forwarder in deciduous forests. European Journal of Forest Research. 2010. Vol. 129. P. 561–569. https://doi.org/10.1007/s10342-010-0356-3
Udali A., et al. Managing harvesting residues: a systematic review of residue extraction practices. Forestry: An International Journal of Forest Research. 2025. Vol. 98. Іss. 2. P. 117–135. https://doi.org/10.1093/forestry/cpae041










