RESOURCE-SAVING AND ECOLOGICAL SIGNIFICANCE OF BIOLOGICAL NITROGEN FIXATION OF COMMON BEANS
DOI:
https://doi.org/10.37406/2706-9052-2023-2.6Keywords:
Common beans, pre-sowing seed treatment, seeds, Rhizobium phaseoli strains, productivity, grain quality, economic and energy efficiency.Abstract
High rates of production of common beans and growing demand on the Ukrainian market will help to solve the problem of increasing the production of grain with vegetable protein content, as well as replenishing soil reserves with atmospheric organic nitrogen and stabilizing the economy as a whole. Introduction. The selection of new, promising, and improved varieties, as well as the introduction of modern agricultural technologies and the resource-saving and ecological value of biological nitrogen fixation of common beans, have a significant impact on obtaining a high level of yield and using the potential that is biologically embedded. Purpose. Modern varieties of grain beans have a fairly high level of development and an optimal fertilization system can ensure sustainable and high yields. Therefore, the main task of our research was to study the effect of fertilizer and inoculation on the structure of the grain bean crop and its productivity. Methods. The article describes the use of mineral fertilizers and the use of bean seed inoculation. Protein deficiency worldwide is being reduced due to the use of proteins of animal origin. In the conditions of reforming the agro-industrial complex of Ukraine and reducing the production of animal products, the production of high-protein plant products has become important. As a result of this, the demand for the seeds of leguminous crops has grown dramatically in recent years. Technologies for the use of fertilizers and the cultivation of beans are one of the most effective measures to increase its yield. Results. The positive effect of seed bacterization depends on several factors: the activity of the microorganism strain, the concentration of the cell suspension, the amount of biologically active substances in the suspension, the duration of the seed treatment, the type of plant, the state of the native microflora at the time of sowing, the characteristics of the soil, the conditions of the agrotechnical complex. It has been established that introduction by strains originally isolated from the rhizoplan or rhizosphere of the same plant species is much more successful. One of the methods used to increase the realization of the biological potential of plants and microorganisms of agrophytocenoses is the complex bacterization of seeds. Preparations of polyvalent action based on compositions of several microorganisms, subject to individual complementary selection, are characterized by greater stability and efficiency in various agro-climatic conditions. Originality. Nitrogen is one of the main elements of crop formation, as well as an important factor in the reproduction of soil fertility. Therefore, the problem of its balance and transformations in agroecosystems is an important component of the development of modern energy-saving environmental technologies in agriculture. Nitrogen compounds enter the soil mainly through organic matter, symbiotic and non-symbiotic (associative) nitrogen fixation, and in the form of mineral fertilizers (a synthetic product of industrial binding of molecular nitrogen). In traditional technologies, the prevailing attention was paid to the quantitative indicators of providing the soil with nitrogen-containing substances, and therefore in the agronomic systems of feeding beans, the exclusive role belonged to organic and mineral fertilizers. Conclusion. Under conditions when it is not possible to return the nutrients removed from the crop to the soil through the use of mineral and organic fertilizers, there is a need to find other sources of replenishment of soil nutrients to protect and reproduce its fertility. The most promising, taking into account economic aspects, is biological nitrogen. Therefore, activation of the process of nitrogen fractionation is very important nowadays. It allows for saving on applying nitrogen to the soil. The use of strains of nitrogenfixing microorganisms for common beans is becoming more and more appropriate.
References
Гриник І.В., Патика В.П., Шкатула Ю.М. Мікробіологічні основи підвищення врожайності та якості зернових культур. Вісник Полтавської державної аграрної академії. 2011. № 4(63). С. 7–11.
Крутило Д.В. Бульбочкові бактерії – гетеротрофний та симбіотрофний способи життя. Сільськогосподарська мікробіологія. 2008. С. 147–161.
Samavat S., Mafakheri S., Shakouri M.J. Promoting Common Bean Growth and Nitrogen Fixation by the Co-Inoculation of Rhizobium and Pseudomonas Fluorescens Isolates. Bulgarian Journal of Agricultural Science. 2012. № 18(3). P. 387–395.
Моргун В.В., Коць С.Я., Кириченко Е.В. Рістстимулюючі різобактерії і їх практичне застосування. Фізіологія і біохімія культурних рослин. 2009. Т. 41. № 3. С. 187–207.
Leidi E.O., Rodriguez-Navarro D.N. Nitrogen and phosphorus availability as limiting factors of N2 fixation in common bean. Spain, 1999. P. 1–32.
Kouas S., Labidi N., Debez A., Abdelly C. Effect of P on nodule formation and N fixation in bean. Agron. Sustain. Dev. Tunisia, 2005. № 25. Р. 389–393.
Golparvar A.R. Multivariate Analysis and Determination of the Rest Indirect Selection Criteria to Genetic Improvement the Biological Nitrogen Fixation Ability in Common Bean Genotypes (Phaseolus Vulgaris L.). Genetika. 2012. Vol. 44. № 2. P. 279–284.
Бенцаровський Д.М., Дацько Л.В., Кирієнко М.В. Баланс азоту в землеробстві України. Збірник наукових праць ННЦ «ІЗ УААН». Спецвипуск. 2006. С. 22–25.
Beede S. Improvement of Common Bean for Mineral Nutritive Content at Ciat. Encyclopedia of Life Support Systems (EOLSS). Colombia, 2001. Vol. 1.
Дегодюк Е.Г., Дегодюк С.Е. Біологічний азот у землеробстві України. Київ : Інститут землеробства УААН, 2006. С. 13–22.
Kjeldahl J. A new method for thees timation of nitrogen inorganic compounds. Z. Anal. Chem, 1883. № 22. 366 р.
Коць С.Я. Сучасний стан досліджень біологічної фіксації азоту. Фізіологія і біохімія культурних рослин. 2011. Т. 43. № 3. С. 212–225. 13. Кретович В.Л. Біохімія засвоєння азоту повітрям рослин. Москва : Наука, 1994. 167 с.
Мікроорганізми і альтернативне землеробство / В.П. Патика та ін. Київ : Урожай, 1993. 174 с.
Біологічна фіксація азоту: бобово-різобіальний симбіоз : монографія / С.Я. Коць та ін. Київ : Логос, 2010. Т. 1. 523 с.
Грицаєнко З.М., Леонтюк І.Б. Інтенсивність мікробіологічних процесів і врожайність озимої пшениці за дії проділу максі та регулятора росту біолану. Основи формування продуктивності сільськогосподарських культур за інтенсивних технологій вирощування. 2008. 792 с.
Шишкану Г.В., Титова Н.В. Фотосинтез плодових рослин. Кишинів : Штиинца, 1985. 232 с.
Городній М.М., Бикін А.В., Нагаєвська Л.М. Агрохімія : підручник. Київ : Алефа, 2003. 786 с.