EVALUATION OF AVAILABLE BACTERIOPHAGE PREPARATIONS ON THE MARKET OF UKRAINE AND SELECTION OF PHAGES SPECIFIC TO CAUSATIVE AGENTS OF CANINE PYODERMA

Authors

DOI:

https://doi.org/10.37406/2706-9052-2024-2.33

Keywords:

causative agents of canine pyoderma, bacteriophages, staphylococci, lytic phages, bacteriophage preparations

Abstract

The use of phages for therapeutic purposes in medicine is not a new topic, but at the same time it was forgotten because the effect of using antibiotics was much better. However, with the development of antibiotic resistance in bacteria, more and more attention is paid to the use of phages, which are lytic to the causative agents of many inflammatory processes. The aim of the work was to evaluate the available bacteriophage preparations on the market of Ukraine and to identify phages specific to the causative agents of canine pyoderma. Microbiological studies on the isolation of microflora were carried out according to methods generally accepted in microbiological practice. Bacteriophage preparations available on the market “Piofag”, “Intestifag” and the developed veterinary drug “Fagomast” did not show lytic activity against the main causative agents of pyoderma in dogs: S. pseudintermedius, S. aureus, and S. schleiferi subsp. coagulans Phages active against cells of staphylococci species S. pseudintermedius and S. schleiferi subsp. coagulans, which were used to develop a bacteriophage preparation. Four phages were isolated that were lytic to each of the four types of staphylococci, in particular, phage S.a 4 is active against S. aureus; phage S.p 2 is lytic against S. pseudintermedius; phage S.she 3 ‒ in relation to S. schleiferi subsp. coagulans; phage S.e 5 ‒ for S. epidermidis. The study of the spectrum of the lytic activity of four staphylococcal phages revealed their predominant specificity for a specific type of bacteria. Therefore, for the lysis of a larger number of causative agents of pyoderma of staphylococcal etiology, it is necessary to develop a phage preparation of the “cocktail” type with the content of various phages.

References

Видовий склад бактерій роду еnterococcus молока сирого та сиру кисломолочного «домашнього» виробництва, їх чутливість до антибактеріальних препаратів / Y.V. Horyuk та ін. Scientific messenger of LNU of veterinary medicine and biotechnology. 2016. Т. 18, № 3 (70). С. 44–49. URL: https://doi.org/10.15421/nvlvet7011.

Поширення основних збудників маститу корів на молочних фермах західного регіону України / Y.V. Horiuk та ін. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. 2018. Т. 20. № 83. С. 115–119. URL: https://doi.org/10.15421/nvlvet8322.

Antimicrobial drug resistance profile of isolated bacteria in dogs and cats with urologic problems at Chiang Mai University Veterinary Teaching Hospital, Thailand (2012–2016) / C. Amphaiphan et al. Zoonoses and Public Health. 2021. Vol. 68. № 5. P. 452–463. URL: https://doi.org/10.1111/zph.12832.

Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies / C. de la Fuente-Núñez et al. Current Opinion in Microbiology. 2013. Vol. 16. № 5. P. 580–589. URL: https://doi.org/10.1016/j.mib.2013.06.013.

Banovic F., Linder K., Olivry T. Clinical, microscopic and microbial characterization of exfoliative superficial pyoderma-associated epidermal collarettes in dogs. Veterinary Dermatology. 2016. Vol. 28. № 1. P. 107–123. URL: https://doi.org/10.1111/vde.12352.

Characteristics of antibiotic sensitivity of Staphylococcus aureus isolated from dairy farms in Ukraine / O.М. Berhilevych et al. Regulatory Mechanisms in Biosystems. 2017. Vol. 8. № 4. P. 559–563. URL: https://doi.org/10.15421/021786.

Characteristics of bacteriophages of the Staphylococcus aureus variant bovis / Y. Horiuk et al. Veterinární Medicína. 2020. Vol. 65. № 10. P. 421–426. URL: https://doi.org/10.17221/55/2020-vetmed.

Coagulase-positive staphylococci in dogs and their antimicrobial resistance (systematic review) / M. Shevchenko et al. Naukovij vìsnik veterinarnoï medicini. 2021. № 1 (165). P. 104–118. URL: https://doi.org/10.33245/2310-4902-2021-165-1-104-118.

Garrity G. Bergey’s Manual of Systematic Bacteriology: Volume 3: The Low G + C Gram Positives (Bergey’s Manual of Systematic Bacteriology 2nd Edition). 2nd ed. Springer, 2008. 1330 p.

Horiuk Y.V. Lytic Activity of Staphylococcal Bacteriophage on Different Biotypes of Staphylococcus aureus. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. 2019. Vol. 21. № 94. P. 115–120. URL: https://doi.org/10.32718/nvlvet9421.

Investigation of In Vitro Susceptibility and Resistance Mechanisms in Skin Pathogens: Perspectives for Fluoroquinolone Therapy in Canine Pyoderma / S. Azzariti et al. Antibiotics. 2022. Vol. 11. № 9. P. 1204. URL: https://doi.org/10.3390/antibiotics11091204.

Isolation and Characterization of Two Lytic Bacteriophages Infecting a Multi-Drug Resistant Salmonella Typhimurium and Their Efficacy to Combat Salmonellosis in Ready-to-Use Foods / A. Esmael et al. Microorganisms. 2021. Vol. 9. № 2. P. 423. URL: https://doi.org/10.3390/microorganisms9020423.

Kempf M., Rolain J.-M. Emergence of resistance to carbapenems in Acinetobacter baumannii in Europe: clinical impact and therapeutic options. International Journal of Antimicrobial Agents. 2012. Vol. 39. № 2. P. 105–114. URL: https://doi.org/10.1016/j.ijantimicag.2011.10.004.

Phage cocktail SalmoFREE® reduces Salmonella on a commercial broiler farm / V. Clavijo et al. Poultry Science. 2019. Vol. 98. № 10. P. 5054–5063. URL: https://doi.org/10.3382/ps/pez251.

Phage Therapy: Past, Present and Future / ed. by S.T. Abedon et al. Frontiers Media SA, 2017. URL: https://doi.org/10.3389/978-2-88945-251-4.

Phage-Antibiotic Synergy via Delayed Lysis / M. Kim et al. Applied and Environmental Microbiology. 2018. Vol. 84. № 22. P. 1–14. URL: https://doi.org/10.1128/aem.02085-18.

Quality-Controlled Small-Scale Production of a Well-Defined Bacteriophage Cocktail for Use in Human Clinical Trials / M. Merabishvili et al. PLoS ONE. 2009. Vol. 4. № 3. P. e4944. URL: https://doi.org/10.1371/journal.pone.0004944.

Significance of the Bacteriophage Treatment Schedule in Reducing Salmonella Colonization of Poultry / C. Bardina et al. Applied and Environmental Microbiology. 2012. Vol. 78. № 18. P. 6600–6607. URL: https://doi.org/10.1128/aem.01257-12.

Species composition of circulation microflora and its resistance to antibacterial drugs in the conditions of the impulse veterinary clinic of the city of Lviv / Y. Kisera et al. Naukovij vìsnik veterinarnoï medicini. 2021. № 2 (168). P. 65–71. URL: https://doi.org/10.33245/2310-4902-2021-168-2-65-71.

Staphylococcus aureus of raw cow’s milk / M.D. Kukhtyn et al. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. 2021. Vol. 23. № 102. P. 53–59. URL: https://doi.org/10.32718/nvlvet10208.

Stroich V.V., Horiuk Y.V. Identification of the skin microbiota of healthy dogs and those with pyoderma. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. 2023. Vol. 25. № 110. P. 46–53. URL: https://doi.org/10.32718/nvlvet11008.

Tagliaferri T.L., Jansen M., Horz H.-P. Fighting Pathogenic Bacteria on Two Fronts: Phages and Antibiotics as Combined Strategy. Frontiers in Cellular and Infection Microbiology. 2019. Vol. 9. P. 1–11. URL: https://doi.org/10.3389/fcimb.2019.00022.

Temperate bacteriophages as regulators of host behavior / T. Argov et al. Current Opinion in Microbiology. 2017. Vol. 38. P. 81–87. URL: https://doi.org/10.1016/j.mib.2017.05.002.

The effect of antimicrobial agents on planktonic and biofilm forms of bacteria that are isolated from chronic anal fissures / I.M. Kozlovska et al. Regulatory Mechanisms in Biosystems. 2017. Vol. 8. № 4. P. 577–582. URL: https://doi.org/10.15421/021789.

The influence of external factors on bacteriophages–review / E. Jończyk et al. Folia Microbiologica. 2011. Vol. 56. № 3. P. 191–200. URL: https://doi.org/10.1007/s12223-011-0039-8.

Vasylkiv O., Kukhtyn M. Isolation and characterization of bacteriophages Salmonella spp. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. 2023. Vol. 25. № 111. P. 48–53. URL: https://doi.org/10.32718/nvlvet11108.

Virulence-related traits of epidemic Acinetobacter baumannii strains belonging to the international clonal lineages I–III and to the emerging genotypes ST25 and ST78 / M. Giannouli et al. BMC Infectious Diseases. 2013. Vol. 13. № 1. P. 1–10. URL: https://doi.org/10.1186/1471-2334-13-282.

Published

2024-07-10