RESULTS OF DETERMINING THE KINETICS OF MOISTURE CONTENT AND TEMPERATURE KINETICS IN MEAT DURING CONDUCTIVE DRYING WITH COMPRESSION

Authors

DOI:

https://doi.org/10.37406/2706-9052-2024-4.12

Keywords:

conductive, temperature kinetics, moisture content kinetics, drying, meat, compression, excess pressure, load

Abstract

The key challenges of modern food processing, particularly in the drying of food raw materials, include preserving the nutritional value of the final product while reducing energy consumption. Conductive drying addresses these issues, but it remains insufficiently researched, leading to a significant shortage of scientific data. The demand for long-shelf-life food products, including dried meat, has notably increased in Ukraine due to power supply disruptions caused by the war with Russia. This heightens the relevance of research in this field. Previous studies have primarily focused on determining and analyzing the kinetics of moisture content and temperature during the conductive drying of meat, without considering the compression of the meat itself. How compression affects the moisture removal process from the meat’s structure remains unexplored. This study presents the results of an experimental investigation of the conductive drying of raw meat with thicknesses of 0.003 m, 0.005 m, and 0.007 m under bilateral heat supply conditions, with surface temperatures reaching up to 130°C and varying load weights that created excess steam pressure in the surface layer of the raw material. The authors examined and identified the moisture content and temperature kinetics under compression conditions with loading, determined the optimal thickness of the raw material, and assessed the quality of the final product using organoleptic methods on a 5-point scale. The results were compared with data from previous research, which studied this process without loading on the heating surface, published earlier. The findings revealed that drying under compression with loading significantly reduces the process duration and energy consumption while maintaining high product quality. The approximation of the experimental moisture content and temperature kinetics enabled the development of analytical models of the process in the form of modified exponents, taking into account the sample thickness and the applied load mass.

References

ДСТУ ISO 1442:2005. М’ясо та м’ясні продукти. Метод визначення вмісту вологи (контрольний метод) (ISO 1442:1997, IDT). [Чинний від 2008-03-01]. Вид. офіц. Київ: Держспоживстандарт України, 2007. 9 с.

Погожих М.І., Потапов В.О., Пак А.О., Жеребкін М.В. Енергоефективні технології та техніка сушіння харчової сировини: навчальний посібник. Харків: ХДУХТ, 2016. 234 с.

Скрипник В.О., Пономаренко Б.Г. Можливість використання наявних способів для сушіння жареного м’яса. Вісник ПДАА. 2022. № 2. С. 287–295.

Скрипник В.О., Молчанова Н.Ю., Фарісєєв А.Г., Тарасенко Д.С. Підвищення енергетичної і ресурсної ефективності процесів і апаратів кондуктивного жарення м’яса: монографія. Полтава: ПДАУ, 2024. 274 с.

Acar C., Dincer I., Mujumdar A. A comprehensive review of recent advances in renewable-based drying technologies for a sustainable future. Drying Technology. 2020. Vol. 40. No. 6. P. 1029–1050.

Aksoy A., Karasu S., Akcicek A., Kayacan S. Effects of different drying methods on drying kinetics, microstructure, color, and the rehydration ratio of minced meat. Foods. 2019. Vol. 8. No. 6. P. 216.

Aykan N.F. Red meat and colorectal cancer. Oncology reviews. 2015. Vol. 9. No. 1.

Cross A.J., Sinha R. Meat-related mutagens/carcinogens in the etiology of colorectal cancer. Environmental and Molecular Mutagenesis. 2004. Vol. 44. No. 1. P. 44–55.

Domingo J.L., Nadal M. Carcinogenicity of consumption of red meat and processed meat: a review of scientific news since the IARC decision. Food and chemical toxicology. 2017. Vol. 105. P. 256–261.

Hayashi H. Drying technologies of foods -their history and future. Drying Technology. 1989. Vol. 7. No. 2. P. 315–369.

Hnin K.K., Zhang M., Mujumdar A.S., Zhu Y. Emerging food drying technologies with energy saving characteristics: a review. Drying Technology. 2018. Vol. 37. No. 12. P. 1465–1480.

Kurek M., Hanula M., Wierzbick, A., Półtorak A. Formation of carcinogens in processed meat and its measurement with the usage of artificial digestion – a review. Molecules. 2022. Vol. 27. No. 14. Р. 46–65.

Llavata B., Garcia-Perez J. V., Simal S., Carcel J. A. Innovative pre-treatments to enhance food drying: a current review. Current opinion in food science. 2019. Vol. 35. P. 20–26.

Molognoni L., Daguer H., Motta G.E., Merlo T.C., Lindner J.D. Interactions of preservatives in meat processing: formation of carcinogenic compounds, analytical methods, and inhibitory agents. Food research international. 2019. Vol. 125.

Skrypnyk V.O., Ponomarenko B.G. Analytical justification of the conductive drying process of meat. Bulletin of Sumy National Agrarian University. 2024. Vol. 2. No. 56. P. 79–85.

Skrypnyk V.O., Semenov A.O., Ponomarenko B.H., Farisieiev A.H. Mechanism of determining the kinetics of moisture content and temperature in meat during conductive drying. Journal of Chemistry and Technologies. 2024. Vol. 32. No. 1. Р. 89–98.

Published

2024-12-30