ANALYSIS OF THE CONDITIONS AND PRINCIPLES OF COMPONENT DISTRIBUTION BY THE SECONDARY SEPARATION ORGANS OF ROOT AND BULB HARVESTING MACHINES

Authors

DOI:

https://doi.org/10.37406/2706-9052-2025-1.34

Keywords:

secondary separation, root and tuber harvesting machines, component distribution, separation organs, vibration systems, centrifugal separators, cleaning, root crops, pollution, mechanical cleaning, harvesting efficiency, physical and mechanical properties, stones, soil, plant residues, separation technologies, optimization of conditions, material loss, product quality, agricultural production

Abstract

Root and tuber harvesting machines are important technical means for mechanized harvesting of root crops, such as potatoes, beets, carrots and other crops. One of the key stages of the operation of these machines is the effective separation of components consisting of root crops, soil, plant residues, stones and other impurities. Secondary separation in these machines plays the role of cleaning from various contaminants and ensuring better quality harvesting of products. The process of distributing components in the secondary separation organs of root and tuber harvesting machines requires detailed analysis, since not only the quality of harvesting depends on it, but also the efficiency of the machine as a whole. The principles underlying secondary separation are based on the physical and mechanical properties of the components, such as their density, shape, size, as well as their ability to move under the influence of gravity or mechanical movements. One of the main methods of component distribution is the use of specialized separation devices, which can operate according to different principles: centrifugal distribution, selective screening, vibration, and others. In root and tuber harvesting machines, primary cleaning occurs at the first stages of operation, when large particles of soil, stones, and other contaminants are separated using sieves, screens, or vibration mechanisms. However, at the second stage, during secondary separation, it is important to separate smaller particles, such as soil residues that have passed through the sieve, as well as vegetation residues. The main devices that provide this process are vibration systems, mechanical separators, and centrifugal systems. The choice of appropriate devices and conditions for secondary separation depends on the type of root and tuber harvesting machine, as well as the nature and properties of the mixture being processed. Centrifugal separators, for example, are used to separate components with different densities. This allows for effective separation of root crops from heavier contaminants such as stones. Vibration mechanisms provide additional separation due to oscillations, which allow for a more uniform distribution of the material and improve cleaning efficiency. In the process of secondary separation, it is important to take into account several conditions, such as the speed of movement of the material through the separation elements, the intensity of vibration, the angle of inclination of the working surfaces, as well as the mechanical characteristics of the root crops and contaminants. For example, root crops such as potatoes are prone to mechanical damage during contact with the separation surfaces, so it is important to choose optimal conditions to reduce mechanical impact. One of the important problems of secondary separation is to minimize root crop losses and increase the purity of the harvested product. Insufficient separation efficiency can lead to the fact that small particles of soil or plant residues get into the product, which reduces the quality and presentation of the product. Therefore, in the process of designing and adjusting root and tuber harvesting machines, the precise selection of parameters such as the speed of rotation of the drums, the amplitude of vibration or the angle of inclination of the working surfaces is of great importance. Another important condition is to ensure the stability of the separation elements under different operating conditions. Changes in operating conditions, such as fluctuations in soil moisture or changes in the composition of pollutants, can negatively affect the efficiency of component distribution. To solve this problem, adaptive control systems are being developed that allow automatic adjustment of operating parameters depending on operating conditions. Thus, the analysis of the conditions and principles of component distribution in the secondary separation elements of root and tuber harvesting machines is an important component for increasing the efficiency of harvesting and ensuring high quality of the harvested products. Taking into account the physical and mechanical properties of the components, optimizing the operating conditions of the separation elements and developing innovative technologies can significantly improve productivity and reduce the costs of material processing, which is of great importance for agricultural production.

References

Горбатюк С.М. Аналіз існуючих схем сепаруючих гірок. Перші наукові кроки – 2023 : збірник наукових праць Всеукраїнської науково-практичної конференції студентів та молодих науковців, 14 квітня 2023 р., м. Кам’янець-Подільський. Кам’янець-Подільський, 2023. С. 19.

Грушецький С.М. Дослідження сепаратора піднімаючо-сходячої дії для коренебульбозбиральних машин. Інженерія природокористування : науковий журнал. 2021. № 2 (20). С. 49–56. https://doi.org/10.5281/zenodo.7262230.

Грушецький С.М. Обґрунтування технологічної схеми роторної коренебульбозбиральної машини та основних параметрів. Інженерія природокористування : науковий журнал. 2022. № 1 (23). С. 60–67. https://doi.org/10.5281/zenodo.6819345.

Грушецький С.М., Корчак М.М., Захаравеч Т.С. Аналіз сепарувально-транспортувальних механізмів для коренебульбозбиральних машин. Інженерія природокористування : науковий журнал. 2021. № 4 (22). С. 63–72. https://doi.org/10.5281/zenodo.6967501.

Грушецький С.М., Підлісний В.В. Аналіз конструкцій та результати досліджень сепараторів картопляного вороху. Сучасний рух науки : тези доповідей VI Міжнародної науково-практичної інтернет-конференції журналу “WayScience”, 4–5 квітня 2019 р. Дніпро, 2019. С. 274–282.

Модель технологічного процесу коренебульбозбиральних машин / С.М. Грушецький та ін. Подільський вісник: сільське господарство, техніка, економіка / за ред. В.В. Іванишина. Кам’янець-Подільський, 2019. № 31 С. 52–60. https://doi.org/10.37406/2706-9052-2019-2-7.

Моделювання та перспективні напрями конструктивно-технологічних схем грудкоруйнуючих робочих органів коренебульбозбиральних машин / В.В. Іванишин та ін. Подільський вісник: сільське господарство, техніка, економіка. Кам’янець-Подільський, 2022. № 1 (36). С. 28–35. https://doi.org/10.37406/2706-9052-2022-14.

Плоскі вертикальні криві, які забезпечують постійні тиск і швидкість руху матеріальної точки / В.М. Булгаков та ін. Вібрації в техніці та технологіях : усеукраїнський науково-технічний журнал. 2014. Вип. 1 (73). С. 5–12.

Aliev E., Bandura V., Pryshliak V., Yaropud V., Trukhanska O. Modeling of mechanical and technological processes of the agricultural. INMATEH – Agricultural Engineering. 2018. Vol. 54. № 1. P. 95–104.

Bulgakov V., Nikolaenko S., Adamchuk V., Z. and Olt J. Theory of impact interaction between potato bodies and rebounding conveyor. Agronomy Research. 2018. № 16 (1). P. 52–63. https://doi.org/10.15159/AR.18.037.

Hrushetskyі S., Chaika I. Review of the current state of mechanization of the potato harvesting process. International Science Journal of Engineering & Agriculture. 2024. № 3 (2). P. 47–66. https://doi.org/10.46299/j.isjea.20240302.04.

Hrushetskiy S.M., Yaropud V.M., Duganets V.I., Duganets V.I., Pryshliak V.L. Kurylo, V.M. Research of constructive and regulatory parameters of the assembly working organs for the potato’s harvesting machines. INMATEH – Agricultural Engineering. 2019. Vol. 59. № 3. P. 101–110. https://doi.org/10.35633/inmateh-59-11.

Hrushetskyі S., Rud A., Korchak M., Zamoyskyi S. Evaluation of designs of root and tuber harvesters and ways of their improvement. International Science Journal of Engineering & Agriculture. 2024. № 3 (3). P. 21–42. https://doi.org/10.46299/j.isjea.20240303.03.

Hrushetskyi S., Yaropud V., Kupchuk I., Semenyshena R. The heap parts movement on the share-board surface of the potato. Harvesting machine bulletin of the Transilvania university of Braşov series II: forestry wood Industry agricultural food engineering. Transilvania, 2021. Vol. 14 (63) № 1. Р. 127–140. https://doi.org/10.31926/but.fwiafe.2021.14.63.1.12.

Hutsol T., Firman J., Komarnitsky S. Modelling of the separation process of the potato stack. Agricultural Engineering : czasopismo. Polskie Towarzystwo Inżynierii Rolniczej, 2017. Vol. 21. № 4. P. 27–35.

Pascuzzi S., Bulgakov V., Santoro F., Sotirios A., Anifantis Olt J., Nikolaenko S. Theoretical study on sieving of potato heap elements in spiral separator. Agronomy Research. 2019. Vol. 17 (1). Р. 33–48. https://doi.org/10.15159/AR.19.073.

Published

2025-03-03