APPROXIMATION OF DATA DETERMINED BY THE SEDIMENTATION METHOD ACCORDING TO DSTU ISO 11277:2005 AND BY THE LASER DIFFRACTION METHOD

Authors

DOI:

https://doi.org/10.37406/2706-9052-2025-2.3

Keywords:

soil, granulometric composition, soil texture, laser diffraction, sedimentation, sample preparation, particle size

Abstract

The laser diffraction method is actively used in world practice for the analysis of textural characteristics of soils. But at present in Ukraine, unlike developed countries, research on the use of the laser diffraction method for determining the grain size distribution of soils is at an initial stage and requires further research and adaptation in the conditions of Ukraine. The aim of the article is to highlight the aspects of measuring the grain size distribution when approximating data determined by the sedimentation method according to DSTU ISO 11277:2005 and by the laser diffraction method. on the example of the Mastersizer 3000E laser particle analyzer from Malvern Instruments with a Hydro EV liquid dispersion module. The article presents the optimal settings of a laser diffractometer when measuring the grain size distribution of soil, an improved method of sample preparation before measurement on the device, and a method for selecting optimal refractive indices of samples, according to which the refractive index is taken according to the smallest total difference. It was established that the optimal refractive index when approximating the data of the laser diffraction method and the data according to DSTU ISO 11277:2005 for soils of the accumulative series (typical chernozem, ordinary chernozem and dark chestnut solonetzic) is 1.41, for the podzolized series (podzolized chernozem, gray forest) – 1.42, for the podzolic series (sodden podzolized) – 1.43. At the same time, the difference in fractions between the methods for soils of the accumulative series does not exceed 3.5%, for the podzolized series – does not exceed 5.6%, for the podzolic series – does not exceed 6.5%. It was established that when preparing a soil sample in accordance with DSTU ISO 11277:2005 and with the proposed optimal refractive indices according to the data determined by the laser diffraction method, the soil texture is the same as according to DSTU ISO 11277:2005. That is, the laser diffraction method can serve as an alternative to the classical sedimentation method.

References

ДСТУ ISO 11277:2005 Якість ґрунту. Визначення гранулометричного складу мінерального матеріалу ґрунту. Метод просіювання і седиментації (ISO 11277:1998, IDT). [Чинний від 2006–07–01]. Київ : Держспоживстандарт України, 2006. 59 с.

Показник заломлення. Вікіпедія: вільна енциклопедія. URL : https://uk.wikipedia.org/wiki/Показник_заломлення (дата звернення: 15.02.2025).

Солоха М.О., Винокурова Н.В. Методичні та технічні аспекти визначення гранулометричного складу піщаних зразків ґрунту за допомогою лазерного дифрактометра. Аграрні інновації. 2022. № 13. С. 137–143. DOI: https://doi.org/10.32848/agrar.innov.2022.13.21.

Eshel G., Levy G.J., Mingelgrin U., Singer M.J. Critical Evaluation of the Use of Laser Diffraction for Particle-Size Distribution Analysis. Soil Science Society of America 2004. Vol. 68. P. 736–743. DOI: https://doi.org/10.2136/sssaj2004.7360.

Fisher P., Aumann C., Chia K., O’Halloran N., Chandra S. Adequacy of laser diffraction for soil particle size analysis. PLoS ONE. 2017. Vol. 12 (5) DOI: 10.1371/journal.pone.0176510.

Igaz D., Aydin E., Šinkovičová M., Šimanský V., Tall A., Horák J. Laser diffraction as an innovative alternative to standard pipette method for determination of soil texture classes in central Europe. Water. 2020. № 5. P. 1232. DOI: https://doi.org/10.3390/w12051232.

ISO 13320:2020 Particle size analysis. Laser diffraction methods. [2020-01-06]. Geneva, Switzerland : International Organization for Standardization, 2020. 66 p.

Kasmerchaka C.S., Masonb J.A., Liangb M. Laser diffraction analysis of aggregate stability and disintegration in forest and grassland soils of northern Minnesota, USA. Geoderma 2019. Vol. 338. P. 430–444. http://dx.doi.org/10.3390/app11104427.

Kondrlova E., Igaz D., Horak J. Effect of calculation models on particle size distribution estimated by laser diffraction. J. Ege Univ. Fac. Agric. 2015. Vol 52. P. 21–27. URL: https://www.researchgate.net/publication/299263782_Effect_of_calculation_models_on_particle_size_distribution_estimated_by_laser_diffraction (дата звернення: 15.02.2025).

Makó A., Szabó B., Rajkai K., Szabó J., Bakacsi Z., Labancz V., Hernádi H., Barna G. Evaluation of soil texture determination using soil fraction data resulting from laser diffraction method. International Agrophysics. 2019. Vol. 33 (4). P. 445–454. DOI: https://doi.org/10.31545/intagr/113347.

Miller B.A., Schaetzl R.J. Precision of soil particle size analysis using laser diffractometry. Soil Science Society of America Journal. 2011. Vol. 76 (5). P. 1719–1727. DOI: http://dx.doi.org/10.2136/sssaj2011.0303.

Polakowski C., Ry ̇zak M., Sochan A., Beczek M., Mazurand R., Bieganowsk A. Particle Size Distribution of Various Soil Materials Measured by Laser Diffraction – The Problem of Reproducibility. Minerals. 2021. Vol. 11 (5). P. 465. DOI: https://doi.org/10.3390/min11050465.

Published

2025-05-30